BARISAN DAN DERET
Barisan adalah suatu susunan bilangan yang dibentuk menurut suatu urutan
tertentu. Bilangan-bilangan yang tersusun tersebut disebut suku. Perubahan di antara sukusuku
berurutan ditentukan oleh ketambahan bilangan tertentu atau suatu kelipatan bilangan
tertentu.
Jika barisan yang suku berurutannya mempunyai tambahan bilangan yang tetap,
maka barisan ini disebut barisan aritmetika. Misal:
a. 2, 5, 8, 11, 14, ................ ditambah 3 dari suku di depannya
b. 100, 95, 90, 85, 80, ........ dikurangi 5 dari suku di depannya
Jika barisan yang suku berurutannya mempunyai kelipatan bilangan tetap, maka disebut
barisan geometri. Misal:
a. 2, 4, 8, 16, 32, 64, 128, .......... dikalikan 2 dari suku di depannya
b. 80, 40, 20, 10, 5, 2½, ............ dikalikan ½ dari suku di depannya
Deret adalah jumlah dari bilangan dalam suatu barisan. Misal:
Deret aritmetika (deret hitung) : 2 + 4 + 6 + 8 + 10 = 30
Deret geometri (deret ukur) : 2 + 4 + 8 + 16 + 32 = 62
BARISAN DAN DERET ARITMETIKA
Barisan Aritmatika
Misal: 2, 5, 8, 11, 14, .........an
a1 = 2 = a
a2 = 5 = 2 + 3 = a + b
a3 = 8 = 5 + 3 = (a + b) + b = a + 2b
a4 = 11 = 8 + 3 = (a + 2b) + b = a + 3b
an = a + (n-1) b
Jadi rumus suku ke-n dalam barisan aritmetika adalah:
a a ( n 1 )b n 1 = + - atau S a ( n 1)b n 1 = + - dimana:
Sn = an = Suku ke-n
a1 = suku pertama
b = beda antar suku
n = banyaknya suku
Latihan:
1. Carilah suku ke-10 dari barisan 3, 7, 11, 15, 19, .................
2. Suku ke-3 dan suku ke-16 dari barisan aritmetika adalah 13 dan 78. Tentukan suku
pertama dan bedanya !
Hand out Matematika Bisnis 18
3. Carilah suku ke-21 dalam barisan aritmetika dimana suku ke-5 = 41 dan suku ke-
11 = 23
Deret Aritmetika (Deret Hitung)
Misal: Dn = a + (a + b) + (a + 2b) + ...........+ (Sn – 2b) + (Sn – b) + Sn
Dn = Sn + (Sn - b) + (Sn – 2b) + ......+ (a + 2b) + (a + b) + a
+
2 Dn = (a + Sn) + (a + Sn) + (a + Sn) + ................... sebanyak n
2 Dn = n(a + Sn)
( a S )
2
n
D n n = + atau
( a a (n - 1) b )
2
n
Dn = + +
( 2a (n - 1) b )
2
n
Dn = + dimana
Dn = Deret ke-n (jumlah sampai dengan suku ke-n)
Latihan:
1. Carilah jumlah sepuluh suku pertama dari barisan aritmetika: 3, 7, 11, 15, .........
2. Terdapat 60 suku dalam barisan aritmetika yang mana suku pertama adalah 9 dan
suku terakhir adalah 127. Tentukan D60 !
BARISAN DAN DERET GEOMETRI
Barisan Geometri
Misal: 3, 6, 12, 24, 48, .................
a1 = 3 = a
a2 = 6 = 3 x 2 = a x r = ar
a3 = 12 = 6 x 2 = ar x r = ar2
a4 = 24 = 12 x 2 = ar2 x r = ar3
an = arn-1
Jadi rumus suku ke-n dalam barisan geometri adalah:
n 1
n a =ar - dimana:
an = suku ke- n (Sn)
a = suku pertama
r = rasio antar suku berurutan
n = banyaknya suku
Latihan:
Barisan adalah suatu susunan bilangan yang dibentuk menurut suatu urutan
tertentu. Bilangan-bilangan yang tersusun tersebut disebut suku. Perubahan di antara sukusuku
berurutan ditentukan oleh ketambahan bilangan tertentu atau suatu kelipatan bilangan
tertentu.
Jika barisan yang suku berurutannya mempunyai tambahan bilangan yang tetap,
maka barisan ini disebut barisan aritmetika. Misal:
a. 2, 5, 8, 11, 14, ................ ditambah 3 dari suku di depannya
b. 100, 95, 90, 85, 80, ........ dikurangi 5 dari suku di depannya
Jika barisan yang suku berurutannya mempunyai kelipatan bilangan tetap, maka disebut
barisan geometri. Misal:
a. 2, 4, 8, 16, 32, 64, 128, .......... dikalikan 2 dari suku di depannya
b. 80, 40, 20, 10, 5, 2½, ............ dikalikan ½ dari suku di depannya
Deret adalah jumlah dari bilangan dalam suatu barisan. Misal:
Deret aritmetika (deret hitung) : 2 + 4 + 6 + 8 + 10 = 30
Deret geometri (deret ukur) : 2 + 4 + 8 + 16 + 32 = 62
BARISAN DAN DERET ARITMETIKA
Barisan Aritmatika
Misal: 2, 5, 8, 11, 14, .........an
a1 = 2 = a
a2 = 5 = 2 + 3 = a + b
a3 = 8 = 5 + 3 = (a + b) + b = a + 2b
a4 = 11 = 8 + 3 = (a + 2b) + b = a + 3b
an = a + (n-1) b
Jadi rumus suku ke-n dalam barisan aritmetika adalah:
a a ( n 1 )b n 1 = + - atau S a ( n 1)b n 1 = + - dimana:
Sn = an = Suku ke-n
a1 = suku pertama
b = beda antar suku
n = banyaknya suku
Latihan:
1. Carilah suku ke-10 dari barisan 3, 7, 11, 15, 19, .................
2. Suku ke-3 dan suku ke-16 dari barisan aritmetika adalah 13 dan 78. Tentukan suku
pertama dan bedanya !
Hand out Matematika Bisnis 18
3. Carilah suku ke-21 dalam barisan aritmetika dimana suku ke-5 = 41 dan suku ke-
11 = 23
Deret Aritmetika (Deret Hitung)
Misal: Dn = a + (a + b) + (a + 2b) + ...........+ (Sn – 2b) + (Sn – b) + Sn
Dn = Sn + (Sn - b) + (Sn – 2b) + ......+ (a + 2b) + (a + b) + a
+
2 Dn = (a + Sn) + (a + Sn) + (a + Sn) + ................... sebanyak n
2 Dn = n(a + Sn)
( a S )
2
n
D n n = + atau
( a a (n - 1) b )
2
n
Dn = + +
( 2a (n - 1) b )
2
n
Dn = + dimana
Dn = Deret ke-n (jumlah sampai dengan suku ke-n)
Latihan:
1. Carilah jumlah sepuluh suku pertama dari barisan aritmetika: 3, 7, 11, 15, .........
2. Terdapat 60 suku dalam barisan aritmetika yang mana suku pertama adalah 9 dan
suku terakhir adalah 127. Tentukan D60 !
BARISAN DAN DERET GEOMETRI
Barisan Geometri
Misal: 3, 6, 12, 24, 48, .................
a1 = 3 = a
a2 = 6 = 3 x 2 = a x r = ar
a3 = 12 = 6 x 2 = ar x r = ar2
a4 = 24 = 12 x 2 = ar2 x r = ar3
an = arn-1
Jadi rumus suku ke-n dalam barisan geometri adalah:
n 1
n a =ar - dimana:
an = suku ke- n (Sn)
a = suku pertama
r = rasio antar suku berurutan
n = banyaknya suku
Latihan:
Komentar ini telah dihapus oleh pengarang.
BalasHapusteu ngartos pa, ngartos kneh foto na kasep :D
BalasHapusya pastilah
Hapusi like it
Hapusbapak latihan na wajib di kerjakeun heunteu ? :D
BalasHapusharus
Hapusbuat kapan ini teh ? :D
BalasHapusntar klo ada jampelnya
HapusTeu ngartos abi mah :D
BalasHapuske di jelaskeun
Hapusmantap eng pa MTK na, ayna mh ngartos lah,,haha
BalasHapusya,,,,,,,,siep nuhun lah........
Hapuswawawah :D
BalasHapus3 nomor pak ?
muhun
Hapuspa kirang ngartos :DDDDDDDDDDDD
BalasHapuspelajari dulu
HapusKomentar ini telah dihapus oleh pengarang.
BalasHapuspak teu ngartos
BalasHapusnenden
rina
kuraesin
erlin
novy
tiya
pak, maaf pake blog Bilqis, soalnya blog ICBnya lagi "ERROR"
I less understand sir :D
BalasHapusstudied first
Hapuspak saya gak ngerti
BalasHapusiah............ntar aq jelasin lagi
Hapushadir
BalasHapusteu ngrts, pak.
HapusKomentar ini telah dihapus oleh pengarang.
Hapusia.............makasih
HapusTerima kasih atas kunjungan nya
Hapuspak abi teu ngartos..
BalasHapusiah ntar aq jelasin lagi
HapusKomentar ini telah dihapus oleh pengarang.
BalasHapuspak hnteu ngartos :(
BalasHapusPa ayeuna mah tos ngartos.
HapusSinyalna awon janten nambut blog Bilqis.
Yesica, Anis, Siska, Desti.
ea .............ga apa2
Hapusiyah ntar aku jelasin lagi
BalasHapuspak kunjungi blog ku
BalasHapushttp://irfanskate.blogspot.com/
ea ziep............
Hapuspak kunjungi blog aku juga yaaaa
BalasHapusiah...........oc
Hapuspermisi permisi saya ketinggalan :'(
BalasHapusya..............ga apa2 ko.........! makasih yah...?
HapusKomentar ini telah dihapus oleh pengarang.
BalasHapuspak tos tiasa ayna mah ..
BalasHapus:D
ea siep..............makasih
Hapushadir..
BalasHapusangga kw.
ea siep.......
Hapus